<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<site>mtc-m21c.sid.inpe.br 806</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34R/3SFSKRS</identifier>
		<repository>sid.inpe.br/mtc-m21c/2019/01.02.10.07</repository>
		<lastupdate>2019:01.04.11.13.39 urlib.net/www/2017/11.22.19.04 simone</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21c/2019/01.02.10.07.27</metadatarepository>
		<metadatalastupdate>2021:02.11.18.10.48 sid.inpe.br/bibdigital@80/2006/04.07.15.50 administrator</metadatalastupdate>
		<doi>10.1166/jon.2019.1563</doi>
		<issn>2169-432X</issn>
		<citationkey>Riehl:2019:ThEnUs</citationkey>
		<title>Thermal enhancement using nanofluids on high heat dissipation electronic components</title>
		<year>2019</year>
		<month>Jan.</month>
		<typeofwork>journal article</typeofwork>
		<secondarytype>PRE PI</secondarytype>
		<numberoffiles>1</numberoffiles>
		<size>893 KiB</size>
		<author>Riehl, Roger Ribeiro,</author>
		<group>DIDMC-CGETE-INPE-MCTIC-GOV-BR</group>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress>roger.riehl@inpe.br</electronicmailaddress>
		<journal>Journal of Nanofluids</journal>
		<volume>8</volume>
		<number>1</number>
		<pages>30-40</pages>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<versiontype>publisher</versiontype>
		<keywords>Thermal Enhancement, Electronics Cooling, Thermal Control, Pressure Drop, Nanofluids.</keywords>
		<abstract>The paper deals with the development of a thermal management solution for a surveillance equipment, which needs to dissipate high levels of heat loads using both active and passive thermal control devices, that has been designed, simulated, built and tested in real operating conditions. The thermal management system was designed to use both a single-phase forced circulation loop and heat pipes using copper oxide (CuO)-water nanofluid, applied to promote the thermal management up to 50 kW of heat generated by several arrays of electronic components, being dissipated to the environment by a fan cooling system. The heat pipes collect the heat from electronic components that were far from the main single-phase forced circulation loop, rejecting the heat directly in its cold plates. Tests results of the thermal management system operating in real conditions show that with an addition of up to 20% by mass of CuO nanoparticles to the base fluid in the single-phase system, enhancements of up to 12% in the heat transfer coefficients were achieved but the increase in the pressure drop was around 32%. This shows that the use of nanofluid in the heat pipes resulted in a substantial decrease in the heat source temperature. When applying nanofluids in heat pipes, the maturity of this technology has reached Technology Readiness Level (TRL) of 8 for surveillance systems.</abstract>
		<area>ETES</area>
		<language>en</language>
		<usergroup>simone</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>simone</readergroup>
		<visibility>shown</visibility>
		<readpermission>deny from all and allow from 150.163</readpermission>
		<documentstage>not transferred</documentstage>
		<nexthigherunit>8JMKD3MGPCW/446AF4B</nexthigherunit>
		<citingitemlist>sid.inpe.br/bibdigital/2021/02.11.18.06 4</citingitemlist>
		<dissemination>WEBSCI; SCOPUS.</dissemination>
		<hostcollection>urlib.net/www/2017/11.22.19.04</hostcollection>
		<username>simone</username>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>urlib.net/www/2017/11.22.19.04</lasthostcollection>
		<url>http://mtc-m21c.sid.inpe.br/rep-/sid.inpe.br/mtc-m21c/2019/01.02.10.07</url>
	</metadata>
</metadatalist>